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ABSTRACT

Maximum likelihood methods are applied to a series of monopulse
problems, involving both angle estimation and signal detection. Only the
two-beam, off-boresight monopulse problem is studied. Explicit maximum
likelihood estimators are obtained in Part I, and their probability
distributions will be discussed in the forthcoming Part II., Both
deterministic and stochastic signal modele are used here, and maximum
likelihood estimates are obtained for the single pulse case and for different
models of the multiple pulse problem. Particular emphasis is given to the
problem of angle estimation in correlated noise, representing the case of
arbitrary interference.
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PART I: STRUCTURE OF THE ESTIMATORS
l. INTRODUCTION

In classical monopulse, a receiver has two matched channels, each
connected to its own antenna. The antennas have different patterns, or
different phase centers, and signals of known waveform arrive from an unknown
direction which is to be measured by the receiver system. This entire study
is directed at the rather special case in which the signal direction 1is
characterized by a single unknown parameter, such as azimuth or elevation.
This restricted problem is interesting because of its long history and also
because it lends itself to a fairly complete mathematical analysis in an
interesting way.

The results developed here have practical application to direction
finding systems in which only one component of direction is unknown, aand also
to the case where the antenna gains are assumed insengitive to the other
component, as with a radar using fan beams. 1In systems measuring both aziwmuth
and elevation, the techniques discusged here can be used separately on each

component , with somewhat suboptimum results.

The several estimation problems analyzed here are modeled and solved in
rather general terms. However, the basic monopulse problems which motivated |
the work are spelled out in enough detail to keep the regults in direct touch ‘
with practical applications. The method of maximum likelihood 1is used
throughout, and the focus is on fixed-sample angle estimation (i.e.,
off-bore~-sight monopulse), and not on angle tracking, as such.

A mathematical setting has been developed for the special problem of
two-beam, one-parameter monopulse, which appears to be unique to this case.

Instead of dealing with beam gain ratios and complex data sample ratios as
points in a complex plane, this plane is stereographically mapped onto the
unit sphere, The 1likelihood function is directly related to distance on the
surface of this sphere, so that maximum likelihood estimates have very simple
interpretations as geometrical projections. Transformations of coordinates,
of which the well~known transformation of amplitude-comparison to

phase-comparison monopulse is an example, correspond to rigid rotations of the

"
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sphere, and a slightly more general class of transformations allows for the
P “whitening” of problems involving external interference of any kind.
!!: The remaining sections of Part I deal first with the simple case of one
S¥ sample pair and white noise, where the spherical model is introduced and
;é illustrated in terms of standard amplitude-comparison and phase-comparison

systems. Transformations are discussed next, and it is shown that the
amplitude-comparison and phase-comparison formulations are different versions

of the same general problem, viewed in special coordinate systems.

h )

Generalizations are then introduced along two lines. 1In one line, multiple
sample-pairs are considered, with coherent and incoherent signal models. In

the other line, non-white noise is introduced, permitting the analysis of
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direction-finding in the presence of interference. Finally, a
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non-deterministic signal model is used to show that the same estimators for

51
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direction of arrival are obtained as in the dgterministic models of the
previous sections.

In Part II, to be published separately, the performance of the maximum
likelihood estimators is discussed. Explicit probability density functions
are given there for the single pulse case, for both internal and external
sources of noise. For the multiple pulse case, a recursive expression for the

probability density function is given, together with explicit formulas for

certain moments which can be used to characterize accuracy.
Many of the results in this report have been obtained by, or in
collaboration with, J. R. Johnson. His insight and encouragement has played

an essential role in the development of the ideas presented here.
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2. GENERAL FORMULATION OF THE CLASSICAL TWO-BEAM MONOPULSE PROBLEM
In a two—-channel monopulse system we model the complex modulation

functions at the respective antenna terminals as Z)(t) and Z3(t), where
Zi(t) = Aeld s(e)vy(y) + we(e) ,

for k = 1,2. The rf amplitude and phase are represented by A and §, while
S(t) stands for the complex signal waveform, assumed known. Azimuth (or
elevation) is called vy, and the Vi(Y) are the complex voltage gains of the two
antennas in direction y. Finally, W;(t) and Wy(t) are totally independent,
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complex circular white noise processes, each with zero mean and single-sided

power spectral density N,. This last assumption results in the complex
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covariance function

E W (0)W (') = 2N, 8(t'-t)

X for each noise process, and the circular property is represented by the

equation
E We(t)wg(t') = 0

for k = 1 or 2.

These signals are passed through identical filters, matched to the
expected modulation, so that the complex outputs, sampled at the correct time
for maximum signal components, are

2 = G [ S*(t)zp(t)dt = s + oy .

The real and imaginary parts of each complex sample represent in-phase and
. quadrature components, and G is a gain factor. The separate signal and noise
terms are, of course,

s = G Aeld vi(v) [[s(t)|2 4t
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and o = G [ s*(o)w(tde

and signal parameters have been suppressed in the notation.

The noise samples are complex, circular Gaussian variables, and we have
the expression

Elng|2 = 262 Ny [ |s(t)|2de

for the variances (k=1l,2).
We now choose the filter gain factor to make
czno [|S(c)|2 de = 1 ,
8o that
Elnklz- 2 .

Thus the real and imaginary parts of n1 and n2 constitute four real Gaussian
variables, each with zero mean and unit variance. Next, we introduce the
normalized voltage gains

Vk(v)

Vk(Y) S

2 2
\/jvl(Y)l + |[Va(y)|

and write the signal components in the form
sk = bvp(y) ’

where b is our last new parameter, representing complex amplitude, and given

by

2 2 2
b=¢ Ae“\ﬁvl(y)l + [va(v)|  fIs(e)| dt .

ata a4




y i Saa SR et e A M w LA W S AL T R POt S et
g A e TR T Y I I 10y TR T AR A AT AP STACP I IR R PP F A RN e e S e e e T Pt L Y T f.a._-tj

R
; '!
bt The argument of b is still the rf phase, and the magnitude is determined from
fo. ot ‘2
4 2 2 2 2
¥ b = § (Vi0]” + W201'} [1s(e))] ae
) .
)
as a result of our choice of G. But

's"
,':" » 1 . .
o 5 A|ve(v)|? []s(t) |24t
i 2
Oy
i ¢ is the total signal energy in the kth channel at the antenna terminals, and if
4. the sum of these two energies is called Eg, the total signal energy collected
C by the system, then we have . :
2 2B
b o} = W,

"’- and the signal to noise ratio of the system may be defined as
Y

2 2 2

& ls1l” + sz b~ g,

\) - Y 4 V4 - Ll — .
2 Bl +Elngl. 4 28,

Vs Everything that follows is based on the simple model !
2 |
.] )

zp = bv(y) + o oy

with normalized beam gains and univariate noise components, as defined above.
It should be clear that the special assumptions of ideal matched filtering and
sampling can be relaxed, with only a change in the significance of b. In

:"‘(..‘ - Iy W ’ < *.; &
A XS v P 3l
.

) Part I we are concerned only with the estimation of vy, and b {s a nuisance
parameter, but the connection with signal energy and noise spectral density is
'2" important in Part II, where performance is evaluated and signal to noise ratio
”ﬂ is a funiamental quantity. It is then important to relate b to physical
;, parameters by means of a specific model, as we have just illustrated above.
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Note that no assumptions have been made with respect to :he voltagglgaiﬂﬁuof
the antennnas, and that the basic model could apply to any problem % f
characterized by sample pairs with relative signal components fixed by a
single real parameter. o

The probability density function for the two complex samples is

2

£(z),2;) = '—12 exp (- %‘ ’

bx

where

2 2 2
L = |z3 = bvi(y)| + |zz - bva(v)| .

Maximum likelihood (ML) estimation of b and y is, of course, equivalent to
finding the values which minimize Lz. When we expand this expression, using
the normalization property of the vy, and complete the square we find

2 2 2 2
L o= |z;] + [z2] + [b- [vi*(V)z; + v2*(¥)22]]
* * 2
- Ivl (Y)zl + vy (Y)tg' .

The estimate of b, given y, is of course
B(y) = vi*(v)z) + vo* )z,

and ; must minimize

2 2 2 2
H%n L o= [z3] + |z2] = |[vi*(¥)z) + va*(¥)2,) ’

after which b = b (y) .

Again we expand, and write

.....................
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2 2 2 2 .
2 2 2 Vi) | lz1] +lva(v) | |2z2] + 2Relv ™ (¥Iva(y)z12z2%]
MinL = (lzl| + |z2| ) 1- }

2 2
b lz1] + |22]

The quantity in curly brackets will determine the estimator of y, and it is
clear that this expression depends on the data samples only through the
complex ratio 21/22 « Recalling the normalization, it is also obvious that
this quantity depends on the gain factors through the ratio v1/v2 only.

We express these ratios in terms of four, real angle variables, as follows:

V1(Y) 14
;;(Y—) 3 tan(6/2)e

Z3

— = tan(n/2)ei¥ .
zZ

The angles 6 and n are restricted to the range [0,n], so that ¢ and ¢ are tie
arguments of the respective ratios. Angles 6 and ¢ depend implicitly on vy, of
course, and we may interpret 6 and n as polar angles, ¢ and V as azimuthal
angles, describing points on the unit sphere. The data ratio is mapped into a
single point (n,y), but the gain ratio traces out some trajectory on the
sphere, as Yy varies over its normal range.

The direction finding properties of the actual system are completely
specified by the "characteristic trajectory” over which (6,¢) varies, and
there is no guarantee, in general, that this trajectory is a simple curve. It
is also not guaranteed that any point on the trajectory corresponds to a
single value of vy, but it is clear from the form of L2 that there will be no

way to resolve these ambiguities from the data samples, z

and zz.

1
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&E It is easy to show that
i ‘y 2 2
51 [vi¢y)| = sin (8/2) = % (1 - cosb) ,
e
= 2 2 1
|va(y)| = cos (8/2) = 5 (1 + coed), and that
: vi(YIva*(y) = sin(9/2)c03(8/2)e1¢ - % sind et
- Similarly,
R 2
= Izll 1 a )
“ 3 7 " 3 - cosn) ,
: |221% + |22
2
'z2| 1 a+ ) o
- = cosn a .
B 2 2 2 ’
g a1l + 22
7
- % sinn el

2 2
|211° + |2,| ‘

When these expressions are substituted we obtain

H%n 1?2 - %(|z1|2+|22|2)[1 - cos@ coen - sind sinn cos(¢ - ¥)].

AU A LA LRLER P

j?’ But
cosd cosn + 8in® sinn cos(¢ - §) = cosd ,

where A is the arc distance between (6,4) and (n,y) on the surface of the
sphere. Finally,
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H%n 12 = (|z1|2 + |z2|2) sin’(a/2)

.

and the estimation problem reduces to minimizing A, or finding that point on
the characteristic trajectory of the system which is closest (in the ordinary

RN N o]

metric sense on the sphere) to the data point (n,y) .

If the characteristic trajectory is complicated, then the spherical
interpretation is of no particular help in finding an algorithm for explicit
minimization, but in some important idealizations, it permits a simple,
explicit answer to the estimation problem.

The equation

AAPRRS - PIPXMEP
.

w = tan(8/2)eld

establishes a mapping of the complex w—-plane onto the unit sphere and vice
versa. It is, in fact, the well-known stereographic projection of the sphere
onto the plane. The plane may be taken as the extension of the sphere's
equatorial plane, with points geometrically projected between sphere and

plane along lines originating at the south pole. The mapping is conformal and

also maps circles into circles. We do not need any of these facts (although
they help the intuition), since it is more fundamental to this problem to
concentrate on the many-to—one mapping established between complex
two—component vectors, such as

and the corresponding points (n,y) on the sphere.

In addition to the estimation of signal parameters, it is often necessary
to decide on the presence or absence of any signal in the first place. The
"noise-alone” hypothesis, b=0, is characterized by the sample probability
density function

D T T Nt e e e
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( ) L exp (- —02 )
£o(z21,25) = P ,
0%%1.%2 4'2 2

where
2 2 2
Lo” = |z1]° + |22]° .

Maxioum-likelihood testing then reduces to evaluation of the test statistic

Lo2 - gig Lz. If the ML estimate, ?, corresponds to the minimum distance A .
?

then

Min L% = % (|21|2 + |21|2)(1 - cosd ),

b,y

and detection is based on the test
1 2 2 a
7 Uz1l” + [22|)(1 + cos B) > threshold .

Examples of the ML estimation of y and the corresponding detection criteria
are given in the next two sections, beginning with the familiar examples of
phase-comparison and amplitude-comparison monopulse. '

Before leaving the topic of detection, it 18 interesting to consider
a refinement sometimes called interference detection, or “data editing”.
Monopulse measurements are easily disturbed by extraneous signals, since the
estimation procedure depends critically on the assumption of a single source,
with the consequent cancellation of the unknown signal amplitude and phase in
the ratio, zl/z2 » upon which estimation is based. The presence of another
signal component can be detected, however, and this fact used as a flag to
inhibit processing of the affected data for signal location.

Interference detection is accomplished by adding a third hypothesis,
"multiple targets”, to the single-target and noise-only hypotheses already
discussed. If two signals are present, the pdf of the sample pair has the
standard form

10
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X £(z), 2p) = L (2
- 4
2 2
e which applies to all the hypotheses, but in this case L will be
hhe
h.i
i
£ 2 o' 12 'vy' |
' L =z ~bvp~bvy | +|zz = bvy - b'vy'|
12
e Here b and b' sre complex amplitudes, vl and v2 are voltage gains for the
E' first signal component, while v1' and v2' refer to the other. The second term
i . can be made to vanish by the choice
& | Lo
.ti b' = v_z'i‘ (22 - bvz) ’
leaving
v’ i' wn1\ 2
gt (o5

for the remaining term. By choosing signal locations at different points on
the characteristic, so that

v vy
V2| -V-; ’

we can mske this term vanish by a suitable choice for b. Further signal
components are luperfluous, hence the multiple target hypothesis always allows
ki us to make Min L = 0.
Il

jj For any hypothesis concerning the signal structure, we can define the log
7 likelihood function ‘f

A = log Max f(z;, z;) = - il-m.n L2 - log (4%2) ,

11
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:,. where Max and Min refer to signal parameters contained in L2. For the
' noise-alone hypothesis, H0, there are no signal components, hence no
= parameters, and we have

i% , Ag = - %‘Loz -log(4%2)

() where, as before,

- : 2 2

2 L2 = |z1| + 22| .

~. When one signal component is allowed (hypothesis lll), confined to the
;:; characteristic trajectory of the system, we have found that

:::

. Min L2 = (2|2 + |25|2) sin2(8/2) |,

u‘?:

NS

2

o2 where A is the minimum distance attained by the ML estimate of location, and
P hence we cau wxite

N , -

;ﬁ M = - 5 Lg? s102(4/2) - log(4w2) .

o

-

Finally, for the multiple-target hypothesis, H2, we have
Ay = - log (4%2), -

since we have shown that Min L2 = 0 in this case.

In pairwise hypothesis testing, such as Hl verus no, we compare the
difference of the log likelihood functions to a threshold. Thus, we accept Hl
over HO 1if
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for some constraint u, which will be chosen to meet the false alarm

probability requirements. The resulting test, in this case, has already been

‘discussed. To generalize the testing to multiple hypotheses, we introduce a

constant, yy, for each hypothesis, and consider the numbers Ay - uy, for k=0,
1 and 2. If the largest of these occur for k = £, then hypothesis H, is
chosen. This procedure generalizes pairwise testing in a natural way, and
(with an arbitrary tie-breaking rule) leads to an unambiguous choice of
hypothesis in every instance. This procedure can also be viewed as a special
case of Bayes hypothesis testing with a suitable cost matrix.

Since only differences of the yy affect the decision process, we can
take the largest of the numbers

2

To"zl'l-o =M

T = - %-Loz s102(4/2) - y; , and

1'2--"2 »

as the basis for decision. Finally, we can add u, to each of these quantities
and base decision on the smallest of the numbers

toSLoz‘Co ’
t; = Lo2 ein2(4/2) - C; , and
tzEOo

We have introduced new threshold constants, CO= 2 (pu2 - u0) and Cl=2(u2-ul).
It 1s interesting that Loz and A are sufficient statistics for the

three-way decision process. Lo2 is a mseasure of the total energy contained

in the two samples, and A is a measure of how closely the data ratio, :1/32 »

13
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resembles an ideal signal ratio, i.e., a point on the characteristic
trajectory. With two signals ptedent, the data ratio can be anything, even in
the absence of noise. If this ratio falls on the characteristic by accident,
the data will look like a single target, and there is no reason to expect the
receiver to decide otherwise. But usually, the data ratio will off the
characteristic when an interferor is present, and A will allow us to sense
this, even though the received energy is large. In a simple test of Hl versus
HO, the receiver will choose H; if the received enmergy is large enough, even
the estimated location is far from the system trajectory.

To see how the decision mechanism operates, we can define the equivalent

pair of statistics

>
"

Lo cos(A/2) ,

Ly sin(A/2) , and

"
n

plot the decision regions in the X-Y plane. Since distances between points on
a sphere never exceed ¥, both X and Y are non-negative. The HO0:H1 boundary is
given by t0 = t] , or

Lozcooz(Z/Z) =Co~ C .

Obviously, CO must exceed Cl or we could never have t0 less than tl. Hence
the required boundary is the line

X = VG - C1 =Xp .

Similarly, the Hl1:H2 boundary is the line

Y= ‘/Cl H Yo ’

14
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and Cl 1is positive to allow the possibility of having t1 < t2. Finally,

the HO:H2 boundary is the circular arc ,/xz + Yz =yCo =V xoz + Yoz .

The three boundaries meet at the point (X0, Y0), and a typical situation
would be as shown in the figure, where eaéh region is labeled by the
hypothesis chosen for corresponding data points. Only those segments of the
boundaries where the first choice changes are shown.

He

‘Y@ He
H1

X8 X

In general, small sample energy results in the "noise-alone” decision,
while large energy implies efther H; or Hy. For H; to be preferred, the angle
Z must be small (the data point must be near the system trajectory), and the
larger the received energy, the smaller 2 must be. The parameters X0 and YO
allow some control over the performance of the system, as characterized by
errors such as false alarms and incorrect editing.

In Section 7 we deal with the problem of interference in snother wvay. The
interfering sources are treated as stationary noise sources, and it is assumed
that the resulting noise covariance matrix is known. Maximum likelihood
estimation is then performed in the context of known, non-white noises. That
approach makes sense when one has an opportunity to observe the noise and then
attempt the estimation of target location before the noise has changed
statistically. The treatment in the present section is complimentary to this,
dealing with intermittent and unpredictable interference in a simple way, by
recognizing and discarding contaminated samples.

15
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3. IDEAL PHASE-COMPARISON AND IDEAL AMPLITUDE~COMPARISON MONOPULSE
A phase-comparison monopulse system is essentially an interferometer,
which employs two identical antennas with separated phase centers. If the
complex voltage gain of either antenna, relative to its own phase center, is
V, then the corresponding gains relative to a phase center midway between them
can be written
Vi(y) = Ve ikcosy

Va(y) = V e-ikcosy

The gain function V depends implicitly on the actual direction of arrival of
the signal, and it is assumed that the antenna boresight directions are
parallel. Our parameter f is the angle between the signal direction of
arrival and the baseline direction established by the line between the
separate antenna phase centers. The constant k, of course, is w d/A , where
d is antenna spacing and A is the signal carrier wavelength.

The normalized gain functions are
1 eikcoa Yy+a

vl(v) -"_—T

1 -ikcos Yy + a
v(y) =—— e
2 2

where a is the argument of V. Only Y can be measured by the system, of
course, and the gain ratio depends on this directional parameter alone:

vi(y) 21kcos Y

7—” =e .

The characteristic trajectory of this system is, of course, the equator {or
part of it) on the unit sphere:

06 = x/2

¢ = 2 kcos Yy

16




If d exceeds Yy, the whole equator is possible and Y is a multivalued function
of ¢. As mentioned in Section 2, this kind of ambiguity cannot be resolved by

.
A
-
-
ot

-
’II-
ot

;ﬁ the system, and the best we can do is to estimate ¢. By restricting our
&j discugsion to the estimation of ¢, we are dealing with all phase-comparison
e sytems, and the final translation of this estimator and its performnce back to

!'
~

the parameter y will not be carried out. We also choose not to discuss the

b

b
.

case d v explicitly, and define the “"ideal phase-comparison system”™ as one
whose characteristic trajectory coincides with the equator of the unit

L

LA RR P i g

sphere.
For the ideal phase-comparison system, we obtain immediately the
well~known result that the ML estimator of ¢ is

YL G

i ‘:(

¢ = ¢ =arg (zl/zz) = arg (22*!1) ’

;f since the projection of a point on the sphere to its equator is along a

? meridian, preserving azimuthal angle, or longitude. Since A= |n - {-I in
i this case, we also obtain the detection criterion

- 1 2 2

= 7 (z1| + 22| )(1 + sin n)> const.

*i But

2 2 2

L (|21} + |z2| Jstn n = 2|z,2,%] ,

2

and therefore detection is based upon the equivalent rule
|z1| + |z2] » const.

In amplitude~comparison monopulse, two antennas with different patterns,
but sharing a common phase center, are employed. In standard notation, the
gain of the "sum beam” is I, and that of the "difference beam” is A. We take
Vi = A and V= T , 80 that

17
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The angle Yy is usually azimuth, and the key assumption is that the gain ratio
is a real function of y. This is generally true in practical
amplitude-comparison systems within the sum beam main lobe, and we define the
“ideal amplitude~comparion system” to be one for which the gain ratio assumes
all real values as y varies. Ambiguities are again possible, but the only
measurement supported by the system is an estimation of the value of this real
ratio. Usually, A is an odd function of vy and I is even, hence we assume that
Y = 0 corresponds to a zero value of the ratio.

The characteristic trajectory of an ideal amplitude-comparison system is
obviously a great circle ihrough the poles of the unit sphere, composed of the
meridians ¢ = 0 and ¢ = #v, It is more convenient to use the equivalent
description ¢ = 0, allowing 6 to range from — ¥ to + n, and then

vi(y)
va(y)

= tan (06/2) .

As before, we study amplitude-comparison systems in general by dealing only
with the estimation of 6., The properties of individual antenna systems enter
only when 0 is expressed in terms of y. This relation is usually simple, and
near boresight is often well-approximated by a linear dependence of 0 on Y.

It is imstructive to rederive the known results for amplitude-comparison
monopulse from our formulation. The estimate 5 is, of course, obtained by
dropping a perpendicular from the data point (n ,y) to the characteristic
meridian. By elementary spherical trigonometry, the result is determined from
the equation

tan 6§ = tan ncos y

18
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It is convenient to restrict ¥ to the hemisphere

L) L]
~z<¢Yy<2x ,

and let n range over [-w, x] , in which case it will be found that 8 1is
uniquely determined by assigning it to the same quadrant as n. it is also
seen that the distance, A, to the characteristic never exceeds ¥ and 18
determined (using the Law of Sines) by

sin A = |sin n sin ¥|.

Amplitude~comparison monopulse is usually discussed in terms of the gain
ratio, as a real parameter u, and the data ratio, as a complex variable w.
Then ' -

u= tan (8/2)

will be expressed in terms of

w = tan (n/2)e1* .
This connection can be derived by noting that

2
1 -(u)2

tan § =
and that

2 Re(w) _ 2 ten (n/2)cos ¥y
T=Tw[Z ——-—'37-27—5—11_““(“2 tan n cos ¥ .

The solutions of the resulting equation:

~

_—""-——' L J —M ]
1 -(a)2 1= |wj?

19
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are

% 3

|w]2 =12 Y (Jw][Z =D)Z + & ReZ(w)
2 Re (w) *

lals
4

uy =

S RERL .

4 &

(S8 %a
‘..‘.-‘

But
: 2 1 241
s ReZ(w) = 3 |w|2 + 3 Re (w2) |,

i and hence (|w|2-1)2 + 4 Re2(w) = |w|* + 1 + 2 Re (w2) = |w2 +1|2 ,

which gives

A _ ]w|2 -1 % w2 +1f
Uy Z Re(w)

g The sign ambiguity is resolved by considering the case
% w = x = real,

Then :n... = xand u- = -1/x » and only the positive root is consistent with
N the constraint of keeping o and n in the same quadrant. Thus

w2+ 1] + |w]2 -1 _ 2 Re (w)
Z Re (W) W+I[+1-wZ |,

* .
s, =

(-$3

- the desired result (1),
As for the detection criterion, we note that

2 zlg*2

iv _ - 2w
R 1L Y o ] A

¢

QXS Wy

-y
v

hR

so that

i «

)

oin A = |sinn siny| = |zl%|é;% | .

R

{

L]
LI

o ataZan
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Then

R 2y2 . 2
cos A = % [w|2)2 -4 Im2(w) _ |1 + w2|
1+ w2 1+ |w|2

as a consequence of the identity

Im?(w) = zl jw]2- zl Re(w?) ,

and we obtain again the known result(z) for the detection statistic:

% (121|2 + |22|2)(1 + cos R)

zz
|1+z—l'z—
1 2
= 3 Uz1|2 + |z]D 1 +
2 ST
2

1 2, 2
= 5 Uz1]2 + |2z2]2 + |2, + 23])

The approximation u » Re (w) is often used in applications of
amplitude-comparison monopulse. The approximation is good whenever |w|<<1
(often the case for a signal near boresight) and- it is exact, as we have seen,

when w happens to be real. In terms of the sphere, the approximation takes
the form

tan(8/2) ~ tan (n/2) cosy |,

which is not a natural one to make in this context.

The analysis given in this section is aimed at developing familiarity
with the formulation of monopulse problems on the unit gphere. The
idealizations made here, of two special great-circle characteristic
trajectories, are commonly made, in some form, in the conventional analyses of

these problems. They are often acceptable because they fail significantly

21




only outside the range in y at which the system normally operates. One
usually does not expect amplitude-comparison monopulse to work in the antenna
backlobes, for example, and past tracking data is almost always employed in
some way to restrict operation to a well-behaved, main-lobe portion of the
coverage which also permits unambiguous conversion of y to actual signal

direction.

"y .
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4. TRANSFORMATION OF COORDINATES IN MONOPULSE ANALYSIS

It has been known for a long time that the analysis of an ‘amplitude-
comparison system with sum—beam output I and difference-beam output A can be
transformed into the analysis of a phase-comparison system by the introduction

of the new quantities

S+ = L(ztu).

V2

The signal components of the new “coordinates” are equal in magnitude and the
noise components are again independent with the same variances as before.
Formulated in terms of Sy and S_, the problem is mathematically identical to
one of pure phase-comparison monopulse. This is not, of course, an accident.
In this Section we introduce a class of simple, linear transformations of the
data pair, z) and 23, and investigate the induced transformation of
coordinates on the unit sphere. It turns out that data transformations which
preserve the "white” character of the noise samples (independence and
equivariance) induce rigid rotations of the sphere and, in particular, the
transformation from (I,A) to (S4, S.) can be derived as the one necessary to
rotate the characteristic trajectory of ideal amplitude~comparison monopulse

into the equatorial characteristic of its pure-phase counterpart.

We consider the samples, z) and 2z, to be components of a vector, z, in

a two-dimensicnal complex space, writing

z
zZ = 21 .
2
Similarly, the normalized gains and the noise samples are components of
vectors v and n, and we have

zZ = bv4+n.

The conjugate row-vector to z 1is zt, given by
* %
z' -[zl 22] N
23
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and the covariance matrix of the noise vector is denoted

M= Ennt.

We have modeled this noise as white, each complex component having variance 2,

so that

M=21,,

where I2 denotes the 2 x 2 unit matrix.

L . L
Suppose we define new variables, z, and Z, » a8 linear transforms of z,

and z, by writing

where T is a non-singular 2 x 2 matrix with complex components. In terms of
L L
z , the system has gain vector v =T v, and a noise covariance matrix

where 'l‘t is the complex transpose of T. Obviously, if we choose T to be
unitary, 1i.e., TTt - 12’ than the new noise covariance matrix is the same as

the old, and moreover the new gain vector is automatically normalized.

To any vector, such as z, there corresponds a point (n,y) on the unit
sphere, determined by the equation

z
tan(n/2)e 1¢ = L1 |

)
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This correspondence is many-to-one, since z can be multiplied by a complex
H scalar without changing n and y. The transformed vector, g'= Tz, determines
Q another point (n: ¢$ on the sphere, through
z
k7 1 ]
k< L ' z

tan(n/2)e!? = + ,

- %
; and hence the transformation T induces a mapping of the sphere onto itself.
; * This mapping is given explicitly by the equation
gy | Ty rean2)et 41y
- tan(n/2)e - T
N tan(n/2)e” " + T
. 1 22 ’
aé in terms of the components of T. This relation will be used repeatedly in
N this study.

Now it is an established fact. that when T is unitary, the induced
transformation on the sphere is a simple rotation. This equivalence is easily

Lacg i)
. ". '.- ..

proved, as follows.

f ["]

by a vector in our sample space, and consider the inner product

& ‘l.' K

¢ ¢ AR
L]

BERCCRE TR

(a,z) = .l* z 4 ‘2* z,

If

ru

tnn(0/2)31¢ ,

2%
11}

K,

FR&e ¥ AN
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2 2
AN = sin (8/2) ,
lay| + [a2]

2

_ jazl 2

= cos (0/2) , and

Z ~Z

i lay] + |a2]

. 2aa, *

" 12 = singe ¥ |

. 4 Y'4

lay| + |a2]
u exactly lgke the relations used in Section 2. Then, writing ||a|| = (a,a)
5 and ||z|| = (2,z) for the norms of these vectors, we compute
x5

9

- 2 2, .2 2 2 * *
. [(a,2)| = |ay]| |z1| + |az] 22| + 2 Re{a, ap2y2; }
L

2 2 - _
-||a|| ||z“ [1 j1@09 1 goan+l+2£oao 1 + cosn

+2l 8in® sinn Re{e“* -”}]

In terms of A , the distance on the surface of the sphere between the points
(0 ,0) and ('ﬂ.") s We have

2 2 2 | + cos
a2 "= |lal| fle}| 225
since

cosA = cosd cosn + 6ind sinn cos (¢ - ¢) .

Now suppose we introduce a unitary transformation, V, and define the new
L ]
vectors &' = Va and z' = Vz. To these vectors correspond points (6, ¢,) and
L 1
(n, ¢¥) on the sphere, and obviously
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where A' is the distance between (6', ¢') and (n', ¢¥'). But a unitary
transformation leaves inner products and norms unchanged, and we can
immediately conclude that A' = A , so the transformation of the sphere has
preserved the distance between the original two points. Since these points

were arbitrary, the transformation must be a rotation.

The fact of this equivalence is all that is needed in this entire
analysis, although it is useful to know exactly which unitary matrix
corresponds to a prescribed rotation. A simple derivation of this detailed
correspondence appears in Appendix A, where the amplitude-comparison /phase-
comparison transformation is given as an example. .

From an analytical point of view, ideal phase-comparison and amplitude-
comparison systems are versions of the same basic problem, expressed in
different coordinate systems. Since any rotation of the sphere can be
effected by a simple unitary change of basis in the sample data space, we can
say that all monopulse systems are equivalent whose characteristic
trajectories are great circles on the sphere. We refer to these as "great
circle systems”, and say we are working in "ideal phase-comparison coordinates”
when we have rotated the characteristic trajectory onto the equator. The
important portion of a non-ideal trajectory of a real system can be
approximated by a great circle arc, and then rotated onto & portion of the
equator. The ideal phase-comparison estimator, 3 = Yy, can then be used as
an approximation, and expressed back in terms of the original sample variables
of the systenm.

A broader class, whose importance will appear later, includes all systeams
whose characteristic trajectories are small circles on the sphere. By
rotation, these are all equivalent to systems whose characteristics are

circles of constant polar angle (parallels of latitude), say 6 = 6o. It is
obvious that the ML estimator of ¢ for such a system is still 3 = ¢y, and that
the minimum distance attained by this estimate is A = |n - 6o|. From this
last it is easily shown that the detection criterion is
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- |z1| sin(80/2) + |z,| cos(6 _/2) > threshold .

;’ In Part II it 1s shown that the accuracy of the ML estimator of 6 for this
system degrades as the characteristic trajectory recedes from the equator.
For this'and other reasous it appears that the great circle trajectory is the
best that can be attained with a two beam monopulse system.

W So far we have emphasized unitary transformations of the data vector

- because they leave the noise statistically invariant and preserve the

S normalizations of the gain vector, while moving the characteristic trajectory
(whatever it may be) around on the sphere in a simple and useful way.

= Non-unitary transformations are also important, and they are required in the
.. whitening operation used in the analysis of monopulse in interference, in
Section 7. These transformations map the sphere onto itgself in a more
complicated way, but the mappings are still conformal and circles on the

R <

i;é sphere are still transformed into circles, although without the preservation
< of radius. A great circle trajectory is transformed by a non-unitary, noise-
< whitening transformation into a small circle, and this explains the appearance
M of "small circle systems” in the study. The basic theory of non-unitary

';. transformations, as applied to our unit sphere, is the theory of linear

j; fractional transformations of the complex plane. If we write (z}/z;) = w and
L (z1'/22') = w', then clearly z' = Tz implies

4

o

34 21 22

‘

X as we have already seen. The properties of these transformations are

;:i well-knovn(3z and carry over onto the sphere by means of the conformality

‘5; and circle-preserving properties of the stereographic projection. Some of the
: analysis in this study, particularly in Section 7, is motivated by the known
l: properties of linear fractional transformations. The exposition here is

:: self-contained , however, with proofs of statements given in terms of spherical
% coordinates, when needed.

LI N

28

e e




¢ ante Mot RudiC g Wit Sm
T e A s, LGP ML N M S
A" A" At atatal At nta at as e e st T Te e s T Tre

fa o a?a

1)

‘A

\

JR

NG

"‘- ]

e

e

foa

TN

LN 5. EXTENSIONS TO MULTIPLE-PULSE ANGLE ESTIMATION

.o In this Section we make two extensions of the analysis, each

:ﬁ§ characterized by the use of multiple sample~pairs as inputs to the estimation
Ei problem. Our first example is rather simple, and represents a class of

problems exhibiting signal coherence over the set of samples. The point of
the example is to ifllustrate the problem of the simultaneous estimation of
angle and other signal parameters, such as Doppler frequency. Without
addictional parameters, nothing new would be introduced by multiple coherent
samples, which is a situation already included in the formulation given, since

the original signal waveform was quite general.

We formulate the problem directly in terms of the sequence of sample
pairs, 2z;(n) and z,(n), where the subscripts refer to beams, or channels, as
before, and n is a sample index running from 1 to N. We postulate that the
signal components of these samples have the form

Ez (n) = b S(n)v, (V) ; (k=1,2),
where b 1s a complex amplitude parameter and v;(y) and v,(Y) are normalized
beam gains, just as before. The new feature is a complex signal sequence,

S(n), presumed to depend upon one or more implicit parameters, a, and
normalized as follows:

N 2
I |s(n)| =1,
n=1

The motivating exaample 1is Doppler modulation, in which a sequence of returned

radar pulses is passed through a matched filter, as described in Section 2,
with the result that the complex output amplitudes are modulated by a Doppler
sequence, such as

1
S(n) » — ei na .

N
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In all cases the noise is assumed to be white, and independent and
statistically identical from sample to sample.

Maximum likelihood estimation of all the unknown parameters immediately
reduces to the minimization of

2 n 2 2
L = I {Izl(n) = b S(n)vi(Y)| + [zz(n) - b S(n)vy(Y)] }-
n=1
n 2 2 2
- {lzlml TR |b|}
n=]1
n
-2 Re b*{ T [v1(y)s (a)z)(n) + V;(Y)S*(n)zz(ﬂ)]} .
n=1

We have made use of our normalization conventions, and we now introduce the
definitions

2 1 2
eIl £ 15,
n=1

2 2 2
L, = llzall + [|lz2l|
and

o
fk = (S,zk) s nfls (n)zk(n) o

The unknown parameters represented by a are now implicit in fjand f;.
Substituting, we obtain

2 2 2 * * *
L = L+ [b]-2Re{db vy (V) + vy (V) £5]} .

which yields

® ®
by = v) fl'l'Vz 2
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and
2 2 * * 2
Min L = L, = |lvi f1 +v2 £, .
The ultimate estimates of a and Y are to be substituted into b; to yield b.

Note that our expression for Min ins exactly the same as the one derived
in Section 2, except that f, and f, replace z; and 2. Thus we could
incterpret the zk(n) as pairs of time samples of the incoming signals at the
antenna terminals. The independent noise samples would then be direct samples
of wide band white noise. The fk are, of course, correlations of the samples
with an expected waveform, with or without parameters like Doppler. Then, by
a somewhat heuristic limiting process, one could conclude that matched
filtering was a good thing to do before proceding with angle estimation. But
this was the processing postulated in Section 2, and the point of the present
discussion is that matched filtering is a proper part of the overall ML
estimation problem, starting with the incident time waveforms.

The characteristic trajectory of the system is the same as before,
introduced by way of the definition

vi(y) 14
-V;(Y_)- = tan (0/2) e .

But now the data is represented by the point (n, y¥), determined by the
definition: '

f;(;y— = tan (n/2)e ,

which depends upon a, yet to be estimated., If A the arc distance between the
points (n,y) and (6,4¢) are the unit sphere, then we have

2 2 1 2 2
MinL = L =~ (|£;] + |£f2] )(1 +cos d) ,
b o 2
since the expressions are the same as in Section 2 with the fk replacing the

’k'
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With an arbitrary system trajectory, the estimates of y and a will be
coupled in a complicated way, since A will be the minimum distance between the
characteristic trajectory and the curve or region represented by the points
(n, ¥v). However, for a simple trajectory, the estimates can be separated and
performed in a direct sequential way. Using the small-circle system as an
example, the characteristic trajectory is fixed by 6 = eoand for given a, ¢ is
estimated as

; = § = arg (fz*fl) ,

and 2 = |n - 6°| + Finally, a is estimated by maximizing the expression
1 2 2 -
7 Cfr| + |£2] (1 + cos a)
2 2 2 2 *
- %'(Ifll + Ile ) + %-COB Go(lle - lfll ) + sineolflfz I

2
= [sin (OO/Z)IfI(a)I + cos(6°/2)|f2(a)|] .
For an ideal phase-comparison system, this, of course, reduces to
2
(|£3¢a)| + |£2()]) &

The final estimate of ¢ is the value of ¢ evaluated at the ML estimate of a.

In our second example there are no other parameters, but the sample pairs
are modeled as incoherent, with as many unknown complex amplitudes as there
are sample pairs. Specifically, the signal components are taken to be

E= zk(n) = b(n) Vk(Y) ’

with all the b(n) unknown, and the same noise model as in the previous
example. Then

32
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e+ 1 b2 Re I b (0 [v; (N)z1(0) + v () z2(0)]

° n=1 n=1
and the amplitude estimates are

* *
bj(n) = vy (y)z1(n) + v (¥) za(n) .
The estimator, ? » Will minimize

2 2 n * * 2
MinL =L =-I [v; (v)z1(n) + v, (¥Y)z2(n)| , where the
n=1

Min is taken over all values of the amplitude parameters.

We expand and write
2 2 2 2 2
MinL =L = |vi(v)] ¥z 1 -Ivz(Y)? 1 z1 -2 Re {vl*(y)vz(y)(zz, zl)}

where

n *
(z2,2)) = £ z)(n)zz (n) .
n=]

The reduction of the data to an equivalent poinf on the gphere 18 less

straightforward now, since
2 2 2
[Cza,2y)| # 0 2y 0 4 25 0
2 2 *
except as a very special case. But substituting for |vy|, |vo| and vyv,

in terms of 9 and ¢ , according to the formulas introduced in Section 2, we
find

Min 12= 12 - 1 2a 8) - L 1 2,0%(1 + cose
n o f"l( cosb) 7 2,0 cosf)

- 8in 6 Re {e-1¢(zz.zl)}
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- %- L.o2 - %-(l Z2 .2_ Iz lz) cosd - sinf|(z;,2z;)|cos(¢ - ¥) ,

where
v = arg (22, z}) .
We define Q and n by the equations

2 2
'22|-|zll

Q cosn =
Q sinn = 2|(z5,2,)|
and then
M:I.I\Lzl-ll.z-l Q cosA ,
2 o 2
where

cosA = cosd cosn + 8ind sinn cos (¢ - ¥)

as before., Of course,

Q -\/(l 27 |2- 1z I2)2 +lo|(==2,z1)|2 ’

and
iy 2(z2, z1)

Q + tzah =iz .

2
When N=1, Q reduces to Lo and the right side of the formula above becomes
simply 2,/2;, as it must.

For a general trajectory, the estimation of y will be a very complicated
function of the data, but for a great-circle or small-circle system, using
phase-comparison coordinates, 6 will be comstant and ; given by the relatively
simple expression

~

¢ = v = arg (z5,2,) .
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The corresponding detection statistic is

1. 2, 1
fL°+ 7Q cos(n 00)

'il'-(l Z) |2+ 1 zZ3 '2) + 21-(208 eo(l zj lz- ] zll) 2

+ sineol(zz,zl)l

2 2 2 2
= sin (8 /2)1 z; 1 + cos (6 /2)1 z5 1

+ 2 sin (OO/Z)cos(GO/Z)I(zz,zl)l

The ML estimator ¢ can be expressed in terms of the individual estimators for
each sample pair, namely

~

¢n

X 21(11)
arg {zz (n)zl(n)} = arg () ,

since clearly

- n 1;

¢ = arg{ I |z;(n)za(n)| e '"
n=1

This expression shows ¢ as a nice mixture of coherent and incoherent

processing. The individual ¢ - estimates are combined in an essentially

coherent way, as a weighted sum, which is appropriate since the signal ratio

is constant for all the pulses. The samples appear as weights in an

incohereat form, since signal phase is unknown and variable from pulse to
pulse.
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6. GENERALIZATION OF THE NOISE MODEL

The remaining sections of Part I are concerned with non-white noise.

The natural cause of correlated noise samples will be external sources of

deliberate or accidental interference. Various noise models are discussed in

this section, and it 1s shown that the general case 18 equivalent to a mixture

of white internal noise and a single external noise source.

For the general noise covariance matrix,

the diagonal elements must be real and M,; must equal Mlz*» since M is
Hermitian. Moreover, M is positive definite, which (in the two-dimensional
case) is equivalent to the requirement of positive trace and positive
determinant. If we write

1¢

a-b>b ce

ce_1¢ atb ’

with a, b, and ¢ real, then we require
ad>o
and
2 2 2
b +c<a .
These conditions can be met by changing parameters again, introducing

b =d cosb

c=d sind
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a=s=d+f ,

with d and £ non-negative. Thus one general form for M is

f+d (1 - cogb) d siné ei.

d siné e-1° £f+d (1 + cosb)

with positive f and d and unrestricted values of 6 and ¢.

Now consider an external source of noise, at azimuth Yy » 80 that in the
absence of signal the total effective modulation at the antenna terminals is
given by

Zk - VJ(t) vk(yJ) + wk(t) s k=1,2,

Here the Wk(t) are vhite noise modulations as in Section 2, and WJ(t) is an
independent white noise process, with spectral density NJ :

*
E WJ(t)HJ(t ) =2 NJ §(t-t').

Note that WJ is used with normalized beam gains.

Following Section 2, we assume a matched filter system, with output
samples

Z - Jk + o, .
The white noise components are unchanged, with
2
Elnkl -2 ,
and the interference components are

5 = Gvlrp [ shewoa .
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It follows that these components are zero-mean, circular Gaussian samples with

covariance matrix

® * 2 * 2
EJ 3, = vlypvy (yp 6 E | [ s (e) Wy(e)e|

2N .

as a result of our filter gain normalization convention. The location of the
interferor is characterized on the unit sphere by the point (GJ ¢J) , where
1

Y19 = tan(e,/2)e 1 ,
valyy)

so that
vy )|2 )
1 - —-— -
'3 3 (1 - cos OJ) .

2 1

|V2(YJ)| = 3 (1+ cos OJ) , and
* 1 i

vily valy;) = 7 8in 6. & .

In terms of the parameter
;e 1 N
-2 N ’
o
the covariance matrix of the total noise is

1+J (l-coaOJ) J sin eJe 1¢5

J sin OJ e.ioJ 1+ J(1 + cos®

Y .
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Comparison with the general form shows that any noise model can be
expressed as a superposition of white noise and an external source, provided
that source can be placed anywhere on the unit sphere, and that a suitable
scale factor, common to both channels, is introduced. This scale change will
only affect the significance of the signal amplitude parameter.

It is not illogical to place the interferor off the characteristic
trajectory of the system, since that trajectory may well be an idealization
only valid in the system main lobe, and used only in the estimation of signal

. azimuth. In any case, as we shall see below, the resultant of a number of
external sources, all on the trajectory, is itself off the trajectory except

in a special case.

The significance of the parameter J, essentially a ratio of intensity of

external to internal noise, may be seen by noting that

2 2
E (5] + [3201)

E (lnllz + (nzl‘) o

When signal components are added, they have the same form as before, namely
Ezk-bvk(Y) 1]

where

and Eg is still the total energy collected by the two beams. The effective

signal-to~-noise ratio of the sample pair, when both signal and interferor are

present, may be taken to be
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2
|Ez, | + |E=zf 2
Hll + sz 4(1 + J)

2N° + NJ

By means of these relations, the theory can be applied to any model of signal
and correlated noise, but we retain the notation of the noise covariance last
given, in terms of J, OJ and ¢J, because it is intuitively useful. Note that

TrM = 4(1+J) ,
and that
Det(M) = 4(1 + 2J).

It is instructive to examine the case of multiple external sources, which
are characterized by locations (0 8? 08) and relative intensities J‘ , Wwhere s
runs from 1 to S. The sources are assumed to be independent, and the total
covariance matrix, including normalized internal noise, will then have

components

S
ull 2{1 + I J'(I-COG e')} ’

g=]
s=1]

S
Mz = 2{1-0' z Js(l+cos 9.)} s

S 14
M = 2 T J 6in0_e '8 , and
g=] B 8

*
My = My, .

We equate this to the matrix
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1 + J(1-cos 03) Jein 6; e 14
2
2k
X J sin 6;e ~4g ! + J(1 + cos 8) ,
Wil N -

which corresponds to our standard form with a scale factor k on each channel.
Q : The multiple sources will thus correspond to an equivalent single source,

together with a modified internal white noise component. The connection
. equations are

2 S
k J sin 6 LA g £ J, sin o se'?s ,
s=]
2 S
k J cos 8, = L J, cos 0g ’ and
f s=]
".f 2 S
k(l+J) - 1+ J' .

L~ g=1

Equating arguments on each side of the first equation yields ¢J, and the
equality of the remaining magnitudes, together with the second equation, fixes
eJ and the product sz. Finally, k2 is found from the last equation.

It is interesting to find the location of the equivalent external source
on the unit spere. Let uj be a unit vector whose rectangular components are
given by

(uy), = cos 6

(!U)x = sin 6 cos ¢;

(!U)y = gin OJ sin OJ ’

and let 8, s=1, ...8, be unit vectors corresponding to the angles (84,44).
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We equate real and imaginary parts of the two sides of our first equation
above, and combine these two with the next equation, supplying appropriate
unit vectors, to find

Thus, for two sources, the resultant lies on the great circle arc joining the
respective points on the surface of the sphere. This resultant is combined
with a third source, and so on. The resultant of all sources lies within the
smallest convex region which includes the individual locations.

With a group of external sources, each located on the system trajectory,
the resultant will generally be off that trajectory. The one exception is
the great circle characteristic.
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7. MAXIMUM LIKELIHOOD ESTIMATION OF ANGLE IN THE PRESENCE OF INTERFERENCE

We have shown in Section 6 that the general case of correlated noise in
the two monopulse channels is equivalent to a model having white noise
components, together with a single external source of appropriate strength
and location. Specifically, the complex samples upon which estimation will be
bagsed are taken to be

z, =8 + jk + L k = 1,2 ,
where

s, =bv.(v) ,

and B = 37 () .

Here b 13 an unknown complex signal amplitude, Y represents the signal angle
(azimuth or elevation) to be estimated, yj is the known angle of the
interference, and j, is a complex, circular Gaussian variable representing the
interference amplitude after filtering. The strength of this interference has
been characterized by the parameter J, in such a way that

, 2N
El3, | --ii-aJ .

(o)

As usual, the white noise terms n; and n; are independent, complex circular
Gaussian variables, with

2 2
Ejny| = Enp| = 2.

The particular definition used for J is influenced by the desire to keep the
formulas which appear later in this section as simple as possible. Its




relation to signal-to-noise ratio is discussed in Section 6. In this section,
b is an unknown nuisance parameter, but its counection with signal energy and

internal noise level given by

is important in the analysis of estimator performance. With this model, the
total noise covariance matrix is

1+ J(1 -cosOJ) J aineJe
M=2
3 aineJe-1¢J 14+J3(1+ cooOJ)_J R
where
vity))
15 . 1M1
tan(83/2)e W .

In order to solve the problem of estimating signal location in the
presence of such correlated noise, assumed to be known, we seek a
transformation, W, with the property that in the transformed coordinates,

z' =Wz ,

the noise 18 white. The new covariance matrix will be

M oepe'(z) = wnw
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b and we require that

M'=21, ,

H MY S84 M
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80 that estimation problem in the new coordinates will be of exactly the type
we have already discussed. The transformation matrix, W, cannot be unitary,

rha
4 A&

since a unitary transformation would leave n statistically unchanged while

AL

making j look like a sample vector for an external source at another location.
In fact, the transformed covariance matrix would look just like M, with the
o same value of J and a new location (0'y , ¢'y ), fixed by the effect of the

- 4.

correspond ing rotation on (83 , ¢35 ).

Since W is not unitary, we do not know, in general, what the
characteristic trajectory of the system will be in the new, whitened,
coordinates. Moreover, there are many choices for W, indicating the

possibility of many different characteristics in the new coordinate systea.

% teta N0

Fortunately, all the whitened coordinate systems are simply related and, in

fact, one can be transformed into any other by means of a unitary
transformation. Thus, the various "whitened” characteristics on the sphere
differ by simple rotations. To see this, note that if W is a whitening

transformation, then

fava b ]

. 2wl - u
and hence

e ° wia=o?! .

-

. If V 18 another whitening transformation, then

Y vly - Wl ,

f from which it follows that
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wvl = whht |

which implies that

ww-la wwh! .

Thus V W.l is unitary and since

2 zVz= (VWD) 2 ,

the result is proved. This fact allows us to choose W in such a way that

the characteristic trajectory is changed in a controlled and desirable way.
When the estimator is then transformed back to the original coordinates and
expressed in terms of the original data, the result will be independent of the
choice made for W, so long as W whitens the noise.

Perhaps the simplest example of non-white noise is described by a
diagonal covariance matrix. The noise components are independent, but have
unequal variance. In terms of our general covariance matrix, the equivalent
external source is at one of the poles of the sphere. Such a source would be
in a null of one of the antenna beams. The simplest whitening matrix for this

case is also diasgonal,

with the scaling factors, a and b, chosen to ad just each noise component to
the standard variance, namely 2,

The mapping of points (0, ¢) into new points (6', ¢') on the sphere is
very simple in this case. The general transformation equation reduces to
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eI,

tan (e'/z)ei" = %- tan(O/Z)ei’ ,

ROAE A

B

for this situation. The longitudes of points are unchanged (¢'= ¢), while the

e iy
AT

e
[PCRERRN WS )

latitudes are distorted by the non-linear transformation of the polar angles:
tan(6'/2) = 3 tan (8/2) .

If, for example, a > b, then all points are moved toward the south pole, and

. - -
»

points with small values of 6 move more than points farther from the north

T v
]

pole.

A meridian, such as the characteristic trajectory of an ideal

amplitude-comparison system, is invariant as a curve, but individual points

TV

are transformed according to the above equation. A parallel of latitude is
displaced to a new latitude, but the relationship of points before and after
the transformation is particularly simple, since longitude is preserved.
Actually, this transformation (indeed, any linear transformation of the
coordinates) takes circles on the sphere into other circles, but we can
arrange things so that these general properties are not required to solve the
estimation problem. '

To deal with the general covariance matrix, we proceed indirectly, asking
first what transformations (beside rotations) leave the equator of the sphere
invariant as a curve. We intend to deal only with the case of an ideal phase-
comparison system in general noise, since any system with a circular
characteristic can be reduced to this case by a rotation followed by a
diagonal transformation, and the resulting noise covariance matrix can then be

represented in our general form. The effect of a general transformation,
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tan(e'/Z)ei¢' -

If we choose ¢ = b* and d = a*

on an equatorial point, (v/2 ,¢), is given by the equation

a é1¢ +b

c e10 +d

, the right side can be written

which obviously has magnitude unity. Thus

18 an equator-preserving transformation, and it is not hard to show that the
most general transformation with this property has the form of W, followed by

a rotation about the z-axis of the sphere.

in whitening the noise, hence we see what can be done with the form for W
given above. Since a matrix to whiten M satisfies wiv = 21 , we find out

what W can do by computing

it <

[b]2 2ab
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X
1+ J (1 + cosby)
1
tw = 20! & ——
W= 2 T+23
-J sineJe-ieJ
Let us define

E Z - tan ('6-/2)ej'¢

and put

2 2
|a|+|b|-1,

.

2 2 2 2 .
|a] = cos (8/2), |b| = sin (8/2) ,

. =
Zab--s:l.nee:"¢ , and

3

dt +d- + (d4 - d-)cos 8

=(d4 +d-)sin ae.“

dy +d-

Comparison with the desired form shows that we must choose

‘e

Tala®eale
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since a constant factor can b. absorbed in the quantities d4 and d_ .

-(d4 + d-)sin Ge
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-J sin6Jel®J

1+ J(1 - cosfy) .
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Then
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- (d4 - d.)cos 8
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and (equating the traces),

1 1+
3 dy +d) = ——
] 1 +2J

Finally, we must have

J 8in 3J

—

s sin 6 =
1 +J

and

i) i
AL AN
WP

" .

.ll\-

1 J cos 65
- 5 (dy - d2) = . e
. - 1+2 cos 6

We find 6 from the equation for sin 8, taking the solution in the first
quadrant, and solve for the diagonal factors:

1+J JcoseJ

+
.

1+2J (1+J) cos @

e
H
—

Notice that

P A
a

* AR

LR
,I sw e @
LY

2
J sin 05 1+2J+J  cos’ 63_

- coss-l-

143 (1 + )2

so that

o X/1 +23 + J%cos 0
.2 cos

1+7J

oy
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The diagonal elements are equal in this matrix, and the same will be true of
its inverse, hence W can only whiten noise covariance matrices which
correspond to external sources on the equator (to make cosfj; = 0). For a
perfecﬁ phase-comparison system this would be the case, but as discussed in
Section 6, we wish to analyze the model having an ideal phase-comparison

trajectory but arbitrary noise.

Although a matrix like W cannot whiten the general noise covariance, it
turns out that such a W can diagonalize the general M. To put it another way,
M can be whitened by a sequence of two transformations, the first of which
preserves the equator, while the second is an appropriate diagonal matrix. To
see this, we write the general such two-stage transformation matrix in the

form

where d, and d_ are additional parameters, which will be real and positive
(complex factors can be reduced to this case by z-axis rotations). Again we
compute WTW, and find

d+|a|2 + d_ lbl2 (a4 +d-)a*p

Wiy =

(d4 +4d-) ad* dy |b|2 +d_|a|2 .

Now we have enough generality to match any noise covariance matrix, and we
require that
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;@ The positive root reflects our earlier choice, and the formula shows that
"

R J cos 03

o3 = <1 ,

A (1 +J) cos 6

so that d4 and d- are positive.

The whitening properties of W depend only on the relative phase of a and
b, and we choose to make a real, coampleting the specification of parameters in
W. Altogether, we have

o

J cos 03 _ - 14
1+J+ —— 0 cos(8/2)  -sin(6/2)e ¥
cos 9
1
W=
Y1+ 27
~J cosf y - -14 -
0 14+ J - ——--]] -81n(68/2)e ~¥ co8(6/2) | .
cosb
e -t -

The first stage of this transformation preserves the equator; the second moves
it to the circle parallel to the equator, a distance 0' from the north pole,
where

- 172 -

(1 +J)cos 6 + J cos 0 / d,

tan (6'/2) = ———— - —- - a-
(1 4+ J)cos & - J cos 85 -

52

...............................

vvvvv
......

e e
.....




1 - tan® (8'/2) d- - dy
cogb' = 5 . —— s
1+ tan” (0'/2) dy +d-
J cos 03
or cosQ' - -
(1 + J) cosd .

If the external source is in the upper hemisphere, the whitened
characteristic lies in the lower, and vice versa. The connection between

longitudes on the original equator and the new characteristic in whitened
coordinates 1is

16" cos(8/2)e!? - sin(d/2)e!®

-sin(8/2)el(? - LAV cos(8/2)

which can be written

i ¢-¢J _10-..]
2 o )
e - tan(6/2)e
10 -0 = _
4?9 1 ¢4
2 _ 2
e - tan(8/2)e .
This in turn means that
1 é - ¢J -4 ¢ - 0J
2 - 2
¢' - ¢;5 = 2arge -tan(6/2)e
53
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i and therefore that
i
e ' = & 1 + tan (0/2) ¢ - ¢

2y tan | ——o = — tan | ———— .

2 1 - tan (8/2) 2

The point ¢ = ¢ on the equator, and indeed the entire meridian containing the
.. source location, is invariant to the whitening transformation, thanks to our

: choice of real a. The factor connecting the tangents can be simplified by
) squaring it, with the result that

1 + tan (6/2) 1+ 8in b

c U - — i it e e

. 1 - tan (8/2) 1 - 8in 0 .

%

' In terms of the original noise parameters, the mapping of points (%/2,¢) on

, the original characteristic to their images, (6',4'), on the characteristic in
. whitened coordinates, is described by the equations

R

-

! J cos 0

% cosd' = - —

. V 1425+ 32 cos? 8- ,

et ' - ¢ 1+J (1 +sin 03) ¢~ ¢

.‘3. tan | —5— = ———— e o tan | —---

N 1+J (1- sin 0y) .

- A signal vector, bv, is changed by this transformation to b W v, which we
write as

N

=

e, 54
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b' v = bDWv .

The change in the amplitude parameter is needed since W is not unitary. The
component ratio v,/v, defines a point on the original trajectory:

Fdirgir A A A ST Ve

vi
— - e it
v2
. while v;' /vy' defines the image point, as discussed above. The new vector,

v', is normalized, hence the new signal amplitude satisfies
[b']2 = b2 3 |Wpvy + Wiava|2 + |Wzivp + Wz v |2£ .

We substitute for the components of W and note that

[vil2 = |val2 = 12 , 2 v, v,* -e it

with the results

2 1 J cosby 1 1 -
jWiivp + Wavp| = i35 (l +J+ '-——_o_—’- 7 "7 sin® cos(¢-¢3)
cos

and

2 1 J cosby 1 1 -
W2y v+ Wy vzl -(W 1+J-~- “cosd 7= 7 sin 8 cos(¢ - ¢3)| .
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Altogether, we find

1 172
b' = b { 14+J-Jsin 63 cos (¢ - ¢3) ’
1 +2J

vhich shows that the new signal amplitude depends on the original signal
location. This adds no complication to the estimation problem, since b' is
jJust a nuisance parameter, but the relation of b' to b is required to evaluate
the performance of the ML estimator in this case, which is done in Part II,

Now that we have a suitable whitening transformation, we can complete the
analysis by finding the ML estimator of signal location in the new coordinates
and transforming it back to the original set. For a single pulse, the data

vector, z, 1s transformed to z' = Wz, and the ML estimator on the whitened
sphere 1is

;' = arg (2*;/2' } = {arg (z‘z)*zi} ’

since the characteristic is a parallel of latitude. In terms of the original
data components, we have

arg {(l'z)*l'l} = arg {(WZI:I + “22!2)* (anl + wlzlz)}

"
- arg{[-sin(E/Z)e 10 4+ cos(5/2)z2] [coa(E/Z)zl - lin(5/2)e1’322]} .

since positive real factors do not affect the argument of the quantity on the
right. Continuing, we get
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¢' = arg{z;:z* cos (6/2) + :1*32 sin (0/2)02“J

- - 2 14
- 81n(0/2)cos(8/2) |31|2 + |zz| e }
= arg {e“J l(l + cos a)zlzz*e 540 - cooa)zl*zz 143

- 8in 8 (Izl|2+ |z2|2)]} .

Finally, we factor out the positive quantity, sina, to obtain

- - ~1¢5 -
¢' - ¢3 = arg {cot(G/Z)zlzZ*e + tan (e/Z)zl*zz et

2 2
~(lz1]” + |zg| )} .

On the original sphere, the estimator, ¢ , is given by the inverse of the
whitening transformation:

1 + sinf

The source longitude, QJ, enters as a sort of reference angle in these
expressions, which is a consequence of the fact that the source meridian is
invariant to the whitening transformation. It is interesting that the other
noise parameters, J and 65, enter these equations only through [} » 80 that the
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final estimator, ;, for the general case is identical in form to the estimator
for a special case having the source on the equator at the same longitude and
having an equivalent intensity, to maintain the value of 6. The performance
of ; will, of course, depend explicity on J and 6j.

In the single-pulse case the formula for ;' can be written so that it
depends on the data only through the ratio z;/z,. However, in its present
form, this expressibn is easily generalized to the case of multiple pulses
with independent amplitudes, as in the second problem considered in Section 5.
We assume the noise is stationary over the sequence of pulses, so the
whitening transformation is the same for every pulse. Then ;' is given by

a n *
¢' = arg{ L 2z, (n) z;' (n)} .
n=1

Repeating all the steps of the derivation just given, we easily find that

at _ - n _ n
¢ ~ ¢ = arg{cot(eﬂ)e ¢ z zz*(n)zl(n) + tan(O/Z)eMJ z zlt(n)zz(n)
n=1 n=1

n=1

n 2 2
= £ (Jz1(n)| + |za(m)| >}

In the notation of Sectiom 5,

o
L 23 (n)z;(n) = (2z,, z;)
n=]

and
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W which allows us to write

,5; ¢' - ¢ = arg { cot (8/2)(22,21) e ~145

s - * 2 2y -

% + tan (6/2) (z3,z}) e 145 - izl - iz,l } .

';ci ] The transformation from ¢ to the desired ¢ is, of course, the same as in the
'i single-pulse problem.

3 . These relations provide a formal solution to the multiple-pulse

[~ estimation problem in correlated noise. However, a more succinct result is
T

N possible by following a slightly different line of reasoning. Instead of

i locating the estimate as a point on the system trajectory in the whitened

coordinates and then transforming it back to the original sphere (according to
; the equations just derived), it proves useful to consider the meridian on Ehe
g whitened sphere which passes through the characteristic at the longitude, ¢ ,
7 of the estimate. This meridian maps back onto the original sphere as a
circle, which must pass through the equator (the original characteristic) at
the longitude 3 o By pursuing the course, we obtain a simple, explicit

§ formula for ¢ , and also a geometrical picture of the estimation process as a
,; projection on the original sphere.
o
i Without loss of generality we can take ¢j3 = 0O, since the original sphere
) can always be rotated to make this true, and the meridian corresponding to ¢J
ﬁi (and 7 + ¢j) was preserved by the whitening transformation. Next, we
A introduce the notation
; 2(z2, 2)
Y r =
2 2
; Izyl + 1zs0 ’
g and notice that the equation for ¢' can now be written
e ) A - - *
b1 ¢' = arg {cot(8/2) r + tan (8/2)r - 2} .
9
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Thus r is a sufficient statistic, in the original coordinates, for the
estimation of signal location. The meridian through the ML estimator on the
whitened sphere is the set of points

X3 '_."". ro "f

A

Rl asae] > vl

LR

w' = tan(0'/2 )ej'¢

o for all values of 6'. Replacing tan (6'/2) by a real parameter k, and
¥ introducing the definition

u = tan (8/2) ,

we can write

1 *
w' =k ir+ur -2 .

As k takes all positive and negative real values, w' traces out the desired
meridian. The image of w' on the original sphere is w, determined by the
inverse of the transformation W. It is easy to show that

Det (W) = (1 +23)" /2 |
and that, in the general case,
- - Jcosf g

; cos8(8/2) s1n(3/2)e 14 \ /1 +J- o
cos®
Vit -1
23
%
i 8in(8/2)e 145 cos(6/2) 0 \JG +J+ Jeosdy

L 4L cosd

We substitute in the inverse transformation
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WIII w' + wlz

ws =1
Wap w' + Wiz .

putting ¢35 = O and using the notation d4 and d. introduced before. The result
is . '

Yd_ cos(8/2)w' + vdy sin8/2)

W=

Yd_ ein(8/2)w' + /Ay cos(8/2) .

Dividing numerator and denominator by /d—.,.'cos(e72) and recalling our
definition for u, we find

172 .
@_/Md) w' +u

v = 1/2
(d_/d+) pw' +1 .

172
Now we substitute for w' , and absorb the quantity (d_/d + / into the
free parameter k (without changing notation), to find

*
k (;ll r+ur -2} + 4

e

ws %
uk(ﬁ- r+ur -2 +1 .

]

This is a parametric representation of the curve on the original sphere
which corresponds to the meridian of the estimator on the whitened sphere. For
the moment, we put
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t?. so that
kG + u
w = ukG + 1 '
E;‘ and solve as follows:
_.1-- uw-lG
k w- *
The statement that the right side of this equation is real is the equation of
our curve. It may be written
* * *
(w ~ W) (w=-1)6=(w=-y) (uww-16. ,
or
* 2 * 2 2% 2
wuCG=-6¢)(w] +1)+(GE-uG)w-(G-uG)w = 0.
But
* ®
G-G = ( %- -y (r-r)s= 21('%-- u) Im(r) ,
and
2 » 3 2
- G-ug = G-u)r-20-w)

-

- 1 1 -
u (u u) [(u + wr 2]
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hence our equation simplifies to

i e etin e

2, - 5’.’ "fi

21 Im(r)(lwl2 + 1) +[(Tlf + u) e - 2] w

» LGk |
I

-[(-‘1‘- +u)r-2]w* = 0.

Recalling the definition of u, we find that

P
RN

_ _ 2
1 4y = cot(8/2) + tan(8/2) = —-
[} 8iné ’

and therefore
- % * -
(r - 8ind) w - (r - einb)w

2
jwl +1+1 — =0.
8in®d Im(r)

It is easy to put this equation in the form
2 2
|w = wol - R ?

which represents a circle in the w - plane and also on the sphere, after

substituting
we= tan(e/2)e1¢ .

However, we can better describe this circle by identifying certain points

which must be on it. If w is real, our equation becomes

2 2w
w +1-

- = o ’
8ind
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which is satisfied by the values

Wy = tan(8/2) , and

We = cot(6/2) .

Theée are the values wy = y and w- = 1/u , which correspond to w' = 0 and
w' = » | the poles of the whitened sphere. The image points, w: , lie at
equal distance from the poles of the original sphere, on the meridian ¢ = O.
This is the meridian of the interferor, and w s represents the point (9, é3)
in general, while w_. represents (u-a, ¢3). A line through wy and w. 1is
parallel to the north - south axis of the sphere, and planes through this line
cut the sphere in all possible circles containing wy and w. . Our equation
describes one of these circles which passes through the equator at the point
o

The circle also passes through a point which depends only on the data
(note that v, and w_ depend only on the noise). To find this point, we must
pick w proportional to r, since that will cause 8iné to drop out of the
equation. Putting w = kr, with k real, we have

2 2 ‘
k|r] +1-2k =0 ,

or

—
k=12/1-|r| ,

hence the points,

r

1 £/1-|r|

1lie on the circle. They are equidistant from the equator, at the same

Ry =

longitude. Thus ¢ may be determined as the equatorial intercept of the circle
through wy and w. which passes through Ry and R.. If the interference

64




AR KPRES LY el

e T R e e S T L L

goes away, i.e., J + 0, then 8 + 0 and the points wy and w_ approach the
poles. Circles through w, and w_ then become meridians, and ; is simply
arg(r) = arg(zy,z)), the standard white noise solution. With interference
present the lines of projection (the circles through wy and w. ) become
distorted, moving ; away from the value it would have in white noise.

To get an explicit expression for ¢ , we have only to put

to find where the circle intercepts the equator. Substitution yields

~

(r - sinf)e 1? - (- sind)e 1? = 21 gin6 In(r) .
1f

a = arg(r - sinb) ,
then

- - Im(r)
sin(a -~ ¢) = sind -~ .
|t - 8iné|

But Im(r) = Im(r - 8inf), and hence
sin(a - ;) = gin® sina ,

or

~

¢=a - sin-l(sina sina)

_ -1 { 8106 Im(r) }
= arg(r - 8ind) - gin ———

|- 81nb|
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As noted before, ; + arg(r) as sinf + 0, which means that the sin-l on the

right side of the above equation must be taken in the range (-%/2, 7/2). In
the general case, with interference at longitude ¢j, the result is

sin(a-;) = 8inf sin(a -¢J) ,
with

a = arg(r- sinfe 10) |

In the single-pulse case, we have

22,"2, 2(z/23)

2 2 2
lz1] + |22] 1+ |z)/2,| ,
and it follows that

Ry = 23/ z, = tan (n/2)elt

R = zy*/z % = cot(n/2)el? .

This simple result, that the projecting circle pass through the data point
(n,y) itself in the one-pulse case, corresponds to the fact that, on the
whitened sphere, the estimator lies on the meridian of the data points
z,'/z3'.

It will be noted that our solution of the correlated-noise problem is
based on what might be considered a fortunate guess for the whitening
transformation. This approach was used because it minimizes the amount of
tedious algebraic computation required. Another method, which involves a
direct construction of the whitening transformation, depends upon the detailed
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correspondence between rotations of the sphere and unitary transformations,
which is developed in Appendix A. Using this correspondence, one can write
the whitening transformation as a sequence of three transformations, as
follows. The first is a rotation which woves the location of the interferor
to the north pole. The noise covariance is then diagonal and the
characteristic is a great circle whose center is known. The second transform
is a simple diagonal whitening operation which changes the characteristic to a
small circle whose center and radius can be directly evaluated. The third
transformation is another rotation, which moves the center of the
characteristic circle to a pole, leaving us with standard white noise and a
trajectory which is parallel of latitude. It is possible (but not simple) to
show that the result is exactly the same as the transformation, W, used above.

Still another method is to begin with a triangular transformation matrix
which removes from 23 its projection on z], and equalizes the resulting noise
variances. This operation leaves the noise white and the characteristic
circular. By keeping track of what has happened to this circle, one can
rotate it into position as a parallel of latitude, The result is again W, and
in all cases the meridian of the interferor remains invariant.

67

---------
'

- P PN R I o R I Tl R T IR A T T VL BN SRR S N VTP S N S NI S N S S N S
O T R e e T P T N LT T T LT e PRI PP, WA

......

-
PR Rh. TR A G S SN SOV S TR PR WHY SRS PR SR S



%

ot

',;: 8. NON-DETERMINISTIC SIGNAL MODELS

: In all the cases so far considered, the signals have been modeled

::: deterministically, but with unknown parameters according to various

_"’ hypotheses. Instead, we can assume that the signal waveform is a random
process, such as white noise, or simply postulate that the signal components
- of the sample pair (or pairs) are random variables with a corresponding moment
- matrix. We have already shwon (in Section 6) that the moment matrix of one
'-L sample pair takes the following form, when the only input is an external

& source of white noise:

X 1 + J(1 = cos8y) 3 sin0g &%

‘- M=2

- J sinoJ e 187 1+ J(1 + cosfy) .

.

: The angles 65 and ¢; locate the source on the unit sphere, and we now assume
“ that this point lies on the characteristic trajectory of the system. This

> source location 1s to be estimated, and we allow the system trajectory to be
R completely general. The parameter J is the source-to-internal noise spectral
- density ratio:

J = 1 -Ni

z No ’

2

"1 and its significance was discussed in Section 6. The samples have been
normalized so that M = 2 I, in the absence of any external source, but the

h; model for M is completely independent of the particular form of the filters
used in the system. 1In another application, one might wish to estimate the
azimuth of an external source with a signal waveform different from that for
2 which the receiver channels are matched. This signal could be in the same

i band but utilize a different spreading code, for example. The response of the
n matched filters to a random code from this source could be modeled so that the
:{ samples are approximately Gaussian random variables, and a moment matrix of
3":: the form M would result, with an appropriate value of J.

.'.'_‘ 68




Some of the oldest work on monopulse has used the random model, and we
show here that the ML estimator of source location is identical to that
obtained with deterministic models, regardless of the nature of the
characteristic trajectory of the system.

With this random model, the pdf of the pair of samples, z; and 2z;, 18

he Tams b e

fdled

—a ey
I‘_.. KRN

1 -(zm-lz)
f(z) = ———— ¢ R
n2Det (M)

where

RS AN

o[]S

as before. Note that f(z) is the joint pdf of four real Gaussian variables.

We already know that

Det(M) = 4(1 +2J) ,

s ORIV | RO

and that
1 + J(1 + cosbj) - J sinfy e
- 1
H 1 = ]
2(1 +23)
- J 8inf; ity 1+ J(1 - cosfyj)

Substitution yields

1

. logf(z) - - ————
2(1 + 2J)

{[l + J(1 + cos03)])|21|2 + [1 + J(1 - cosbj)]|z,]2

; = 2J 8in63 Re {zlzz*e-“-’}}- log(l + 2J) - log(4w2).
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With our standard notation for the data ratio:

z)

i — = tan (n/2)el?
. zy

we can use the expressions found in Section 2 for |z;]|2 , |22]|2 and z)2,* ,
with the result

1 |2112 + 222
logf(z) = - 5 W 14+J~- J(cosBJcosn + sinerinncos(¢J- ¥))

- log(l + 2J) - log(4w2).

Again, only the distance, A , between the points (0J , ¢J) and (n,y) on the
unit sphere enters this expression, and

|21]2 + |z2)2
logf(z) = - 7 15323 (1 +J - JcosA)

g - log(l + 2J) - log(4x2) .,

The ML estimator of source location is the same as before, namely that
point on the system trajectory pnearest the data point, (n, y¢). If A 18 the
resulting minimum distance, then

1 1=51l? + 222
Max log f(z) = - 7 533 1 + 2Jsin? (

8, ¢

Lo -2

- log(l + 2J) - log(4n2) .

3

te'st
AT SR

The estimate of J is then found by straightforward differentiation:

%0

3
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J = 21- {21- ()2112 + |22|?)cos? (%)- 1} R

or

;!J - l.lo {% (|21|2 + |22}2)cos? (%)— l} .

For an ideal phase-comparison system, we have OJ =x/2 , §J =y , and
. A = %/2-n. Then
3 - 1 + cosd - L1+ sinn
cos? (?) ~ 2 2

and

2
ﬁJ - No{ 7.1-(|21|2 + |z2] )(1 + sion) - l}

:

. uo{éumu l2l®) + & 1ays” - 1}

=% { 7 Unl + |52 - l}' |

We recall that z; and z; were normalized filter outputs, using a convenient
choice of filter gain. In terms of the quantities

=/ 3*(t)8k(t)dt .

which are the actual outputs of filters matched to S(t), we have
2 -l
. (8, + |8 2
N, = " [ Is(e)| aep =N .
n
B o e R T T e e T e T s el e,
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This analysis is easily generalized to the case of N sample pairs,
assumed independent of each other, and‘statistically identical to the single
pair already modeled. If the nth gample pair 1is denoted z)(n) and zp(n), as
before, then the logarithm of the joint pdf of rhese samples is simply

2
log f =- E?Tféiify {[l +J(1+ coseJ)]lzll2 + [1+J(1 - cosOJ)]Izzl
(
- 2 Jsin6 Re {e - 14 (zz.zl)}}

- Nlog (1 + 2J) - Nlog (4v2) .

In this expression we are using the vector space notation introduced in

Section 5. As in that section, we define the effective data point, (n, ¥),
by the equations

Q ston e'? = 2 (z5,2))

Q cosn = 12202 - 1z2)02
with ’

: 1/2
Q = {(lzzl2 - "1'2)2 +4|(=2o=1)|2} .

In terms of these quanties, we can write

log £ = - ETT7%7E3T { (L + D[1z;02 + 12,07 - JcosA}

- Nlog(l + 2J) - Nlog(4w2) ,

where A is the distance from (OJ, QJ) to the poiat (n, ¥) on the unit
sphere.
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Again, the ML estimator of source location is the same as in the

1% .0«

deterministic case discussed before, where every sample pair had an unknown

5 amplitude and phase factor. If we define
| P =512 + 1202
! we can express the interference-level estimator in the form
; ﬁ-i’-(P+Qcoss)-N
?
) I 4N °

where A is the minimum distance to the system trajectory attained by the ML

Y X0 N R B K A g

estimate of source location. For an ideal phase-comparison system, we again
have cosA = sinn , and then

~

o

i e It e 4

7 = N {l&l"— lzllz + |82|2 + 2'(82,21)| - l} ’

a direct generalization of the single~pair result.
Since we have modeled the external source waveform as random noise, we
can interpret this source as an interferor instead of a desired signal, and

TR

nake use of the above a&alyﬁis to estimate its location. However, in this
application we may wish to remove the constraint that the source lies on the
system trajectory, since the source may be a composite of many separate
interferors. In Section 6 we showed that the resultant may be off the
characteristic in this case, and also that the multiple sources affect the
level of the apparent white noise components.

T W

With these considerations in mind we postulate that the noise covariance
has the more general form

1+ J(1 = cost) J lineJeioJ
M = 2k2

J sing; e 145 1+ J(1 + coed )
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where k is an additional parameter corresponding to an unknown white noise
component. This is exactly the form used in Section 6 to represent the total
noise equivalent to a collection of external sources and white internal noise.
We assume that the data consists of N sample pairs and estimate (BJ, QJ)
first, then J, and finally k. The intermediate results can be used if the
subsequent parameters are presumed known. When all the parameters are
unknown, M becomes an arbitrary positive-definite matrix, and our final result
reproduces the known ML estimator of M, namely the sample covariance matrix.

The addition of the factor k2 is a simple matter, and the logarithm of
the joint pdf becomes

log f=- —Lit— 0 J1+ ND012)12 + 12502) + T cosd (12112 - 12;12)
2k2(142J)

- 2 J sind, ke[e’“J (zz,z,)l}- N log[k*(1 + 2J)] - N log(4n2).
With the introduction of the data parameters (n, ¥), P and Q, as before, we
obtain

1
2k2(1 + 2J)

log £ = -

{(1 +J)P -JQ cosA}

- N logk*(1 + 2J) - N log(4w2) .

The source location, (OJ, ¢J), is now unconstrained, hence we make the
egtimates

~

BJ-n.sJ'W.

which corresponds to A = 0, With this choice, we have

!
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' 1
A log fw=- ———— [P+J (P ~Q)]

2k2(1 + 2J)

-N logk®(1 + 2J) - N log(4x2)

- - —P2*Q _ Niog(1l+23)- BQ - N 1ogkt - N 1og(4n2).
4k2(1 + 2J) 4k?
L

Differentiating with respect to (1 + 2J), we find that the estimator of
J satisfies the equation '

1+2] = E*Q
4Nk2

which leaves

log £ =~ N - N log P+rQ\_P-0Q _, logk2 - N log(4w2).
4N 4k2

If we stop at this point, i.e., treat k as known, the estimated covariance
matrix is rather complicated, with elements

- 12)02 - 12,02
Gy e BEQ 2, DU (P+Q_kz)
4N

Q 4N
. . 12,02 - 1282
Mz2 = PrQ 42, 2 : (P"'Q-kz)
4N Q 4N

Mg = My = % (22,%1) (P—,‘:‘;ﬂ‘kz) .
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If, however, we continue, k is estimated by maximizing the expression

4 k2

AL 1)

with the result

iz_ P-Q
» 4N

When this estimate is substituted in M, the complicated quantity Q disappears
" from the formulas and, substituting for P, we obtain the expected result

| [ 1202 (2,21)

(21,23) lzzlz-J .
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APPENDIX A

THE CORRESPONDENCE BETWEEN UNITARY TRANSFORMATION
IN THE SAMPLE SPACE AND ROTATIONS OF THE UNIT SPHERE

i ek S 3 S A L St AT .. T

In Section 4 it was shown that a unitary matrix, V, viewed as & linear
transformation in a two-dimensional complex vector space, corresponds to a

rotation of the unit sphere. The mapping of a vector

L - 2]

. to a point (6,4) on the sphere i{s expressed by the relation

T

z)

— = tan (8/2) it .,
zZ;

TSI T

Any linear transformation matrix can be multiplied by a complex scalar
] constant without affecting the transformation induced on the sphere, hence
i eia V and V correspond to the same rotation. In this case the scalar factor
] has magnitude unity to preserve the unitary character of the transformation.
The correspondence of transformations can be made unique by requiring that
Det(V) = 1, which we now assume.

To obtain the specific correspondence in question we consider, first,

infinitesimal transformations. We write
VeI, +1e¢H ,
and find that

. wtei,+ 1¢(u-uh,

. to first order in €. Thus H must be Hermitian, and also, since 1

Det (V) =1+ 1¢ Tr (H) ,
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to first order, the trace of H must be zero. Since ¢ is included as an
explicit factor, the elements of H can be normalized in some way, and it
proves convenient to use the following parametrization for V:
V = I,+ (1/2)e s(yp) ,
u3 -(uy + 1uy)
where S(p) =

=(uy - 1y2) - u3

and

u12+u22+u32§10

The numbers u), up and u3 are real, and may be interpreted as the components
of a unit vector y in a real, three-dimensional space. Obviously,

st =5 ,
Tr(S) = 0 .

and also, we find that
2
s-Iz

The induced transformation on the sphere takes (6,¢) into (8',¢'),
where

Vitan (6/2)e1¢ + V2
tan (0'/2)e1¢ =

Vi tan (6/2)e1¢ + Va2
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We write 6' = 6 + A8, ¢' = ¢ + A¢ and expand the left side to first-order

quantities. We also substitute for the components of V and develop the right

gide of the above equation to first order in €. The result is

tan(6/2) + %-secz(O/Z)Ae + 1 tan(0/2)A¢ + ...
= tan(0/2) + 1epztan(6/2) - (ie/2)(p; + 1u2)e_1¢

+ (1e/2)(my - 1u2)tan2(6/2)ei¢ + oo
or A6 = € (upcosd - u;sing)

Ap = € [uz = (ujcos¢ + uzsing)cot 6]

Now 1f we write

1¢o

3 = cosb, up + ipy = sinbgy e ’

ic.acifying the coordinate axes of the three-space in which y is defined with
those of the space in which the unit sphere is embedded, we have

AB = ¢ sineo sin(¢° - ¢) , and
sinfAd = ¢ [coeeo sind - 8ind  cosd cos(¢o - ¢)]
These relations show that the point

6 =9
o

SRR
is unchanged by the transformation, and that its antipode

O=m-0 , ¢=m+o
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is also invariant. Since V corresponds to a rotation, these points lie on its
axis, which is to say that y itself defines the axis of rotation of the
sphere. A plane, normal to yu and passing through the center of the sphere
defines a great circle, which i1s left invariant by the rotation. At the
longitude ¢ = ‘o + nm , this circle reaches its highest latitude, being

tangent there to the circle 8 = LA Go + At this vertex, we find
2

A8 = 0 , and
8ind A¢ = ¢ gin (6 + eo) , O
coseo Ap =
which shows that the angle of rotation corresponding to V is e itself.
Now let V (p , x) be the unitary matrix corresponding to a rotation
through a finite angle, x, in the positive sense, about the axis y . Then
V(p, dx) = I, + (1/2)dx S(yp) .
The sequence of transformations described by the product V(u, dx) V(y,x) then
corresponds to a rotation through x about u, followed by a rotation through

dx about the same axis. The resulting rotation, through x + dx about p
corresponds to V(u , x + dx) , hence

V(p , x +dx) = v(p , dx) V(u ,x)
= V(p ,x) + (1/2)dx S(p) Vv(u,x) «

Thus V (u ,x) satisfies the differential equation

gx Vu ,x) = (1/2) S(u) V(g ,x)
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b with v(y ,0) = I, . The solution is simply

. vy , 0 = MWy,

X,

N S 1 o4t n

e =i o0 (fx) [sCu)]
n=o

2 2 20 + 1

o ‘ But S = I, and S n = S, hence

b e
’

-~ V(g, x) = cos(x/2) I, + 1 sin (x/2) S(u) ,

N

- or, in matrix form

o cos(yx/2) + 1uz sin(x/2) (-1y; + uz) sin(x/2) B

i Vg, 0 - ,

siﬁ (-1u;- uz) sin(x/2) cos(x/2) - iuz sin(x/2)

.- | ,

:% We can now use this correspondence to derive the transformation of the
fﬁ data vector which will comvert an ideal amplitude-comparison system into an
ﬁf ideal phase~comparison one in the new coordinates. First, the sphere must be
‘ ) rotated through 90° about the X axis, in order to carry the amplitude-

i: comparison trajectory (which lies in the XZ plane) into the equatorial plane.
;: In the process, the north pole, which corresponded to the data point (A/I)=0,
?é is moved to the intersection of the negative Y axis with the sphere. A second
-~ rotation through 90°, this time about the rew Z axis, will preserve the

‘i b trajectory while moving this reference point to the nominal reference, 6=w/2,
Q ¢=o0, for an ideal phase-comparison system. From the general form, a rotation
5 about the X axis corregsponds to

Y

cos(x/2) -1 sin(x/2)

".. Vilx) =

-

& -1 sin(x/2) cos(x/2) ’

-

&

o 81

7

E N
"




e e T

.....

and a Z~-axis rotation is given by

o1%/2) 0
Va(x) =

0 e-:lx/Z

The complete transformation we require is V3(-:-) Vl(lz'-) , OF

eiu/4 0 F- .l_: - .j—'—
"2 2
\' =
i 0 e-:l.1r/4d i_: 1
- Y2 2 —
i
- Sin/é 1 1
G“ -1 l .

The new coordinates are then

-in/4

2= e 1 (2 +12,)
2
zm e 4L (g - gz .
Y2
The phase factor, e-"/a, is completely harmless and can be dropped, which

completes the derivation since Z; was the difference channel, Z, the sum

channel sample in our amplitude~comparison formulation.
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